

Efficiency and Equity in Urban Water Access: Case of Kolkata

The increasing demand for water

Present Water-use and Future Requirement in India 1990-2050

Year	Population (million)	Sector-wise Water-use and Future Requirements (million hectare-metres)					<u> -</u>		
		Irrigation	Domestic & Livestock	Industry	Thermal Power	Total			
1990	800	46.0	2.5	1.5	3.0	53			
2000	1000	63.0	3.4	3.6	5.0	75			
2025	1400	77.0	5.0	12.0	16.0	110			
2050	1700	70.0	6.0	20.0	16.0	112			

Declining Quality

Human Induced Pollution

New emerging realities:

How can we ignore?

One third of the world's population is now subject to water scarcity

Population facing water scarcity will more than double over the next 30 years

Future Uncertainty

Risk Reduction and Resilience Building

Efficient and Equitable Management of Water

Multiple Challenges

Unfinished agenda

Proportion of Population with Sustainable Access to Water Source

	1991	2000
Rural	55.54	86.77
Urban	81.38	82.22
Total	62.30	85.22

GOI 2005

Ganga Basin is stressed more:

Population share 75%, Surface water share 35%

Brahmaputra Basin: 9% population, 46% surface water share

Water Resource accounting

ASSET ACCOUNT (in mcm) 2009	TOTAL
OPENING STOCK	
GROUND WATER	683781.4
SURFACE WATER	51010
TOTAL WATER	78456.99
CHANGES DUE TO HUMAN ACTIVITIES	
Abstraction	102699.78
Return	
CHANGES DUE TO NATURAL PROCESS	
Precipitation	165640.6
Inflow	
from upstream	598562.8
from other territories	1491.6
Evapotranspiration	80422.2
Outflow	
to downstream	683781.4
to other territories	
other volume changes-storage	4351.9
CLOSING STOCK	133741.11

Water: SD Management

Declining per capita availability: Supply management -water use efficiency through water intensity reduction

The increasing demand for water: Demand management through Formal t Economic Instruments

Deteriorating quality: Technology, Policy

Future uncertainty on quantity under climate change scenario: SEEAW

Efficient and Equitable Management of water :Information, Water Footprint

Efficient and Equitable Management of Water

Beneficiaries do not pay

- Proportion of beneficiaries of the piped water service among total population: 82%
- Proportion of cost unrecovered: 83.7%

Cost of unjust city

Note: For 40% UFW

Inequity is water use

BPL

per capita (in lts)

- Drinking: 2.5

— Cooking: 9

Other end uses:100

HIG

per capita (in lts)

Drinking: 2.5

Cooking: 18

Other end uses:220

Society bears the burden

More private cost

More private benefit

Cost society pays

Reason is free distribution and no accounting for water use by beneficiaries

Per day wastage of treated water: 103.2 MG, cost wise Rs 8 lakhs lost /day

Electricity required to produce 103.2 MG treated piped water: 108,478 units

Awareness of Poor Quality of Water of the End users

- C	
Income Category	Awareness (%)
DDI	20
BPL	39
MP	41
LIG	46
LIO	+0
MIC	50
MIG	50
HIG	60

Source: Socioeconomic Survey

To move towards a Safe city which is a Just city

Policies to build a zero water waste city

At operational phase

Technology specification

: metering water use for each end user

Economic incentive design

: water service user fee

At construction phase

metering, harvesting runoff, recycle

Let's fix the responsibility

Cost sharing by beneficiaries

Accountability of Service Provider Question

Is this Achievable

Multi-criteria based Strategy

WTP

ATP criteria for basic amenities

Access to Basic Minimum need

Financial Sustainability

Accountability of Service Provider

Need for new rules

Past and Present Regulations

Outcome

- 2003 regulations allowed :
- 10mm, 15 mm ferrule 0 water charge
- 20mm, 25 mm ferrule positive quarterly charge
- 2004 onwards:

Free for all ferrule sizes (residential connections)

- No incentive for wastage reduction
- Efficiency is violated
- Distributive justice is violated

Volumetric Water Charge

Payment based on service enjoyed

Similar service examples:

- 1. Electricity
- 2. Telephone
- 3. Transport

Income Category-wise Water Service Charge Burden on Consumers (Provisional Estimate)

Income Category	Consumption	Estimated Bill/Month	Median Income	Share of Proposed Bill in Income (%)
BPL (Slab 1)	65	10	1000	1
MP (Slab 2)	85	35.2	2500	1.4
LIG (Slab 3)	100	82.2	5000	1.6
MIG (Slab 4)	135	166.2	10000	1.7
HIG (Slab 5)	200	361.2	20000	1.8

Source: Research Team's provisional estimate (Not to be quoted without permission)

